banner



Heat Of Combustion Of Ethane

Ethane

  • Formula: CiiH6
  • Molecular weight: 30.0690
  • IUPAC Standard InChI: InChI=1S/C2H6/c1-ii/h1-2H3

    InChI version 1.06

  • IUPAC Standard InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-North
  • CAS Registry Number: 74-84-0
  • Chemical structure: C2H6
    This structure is likewise available every bit a 2nd Mol file or as a computed 3d SD file
    The 3d structure may be viewed using Java or Javascript.
  • Species with the same construction:
    • 1-Ethenyl-1-methyl-2,4-bis-(1-methylethenyl)-1S-1α,2β,4α-cyclohexane
  • Isotopologues:
    • pentadeuteroethane
    • Ethane-d1
  • Other names: Bimethyl; Dimethyl; Ethyl hydride; Methylmethane; C2H6; UN 1035; United nations 1961
  • Information on this page:
    • Gas phase thermochemistry data
    • Condensed phase thermochemistry information
    • Phase modify data
    • Reaction thermochemistry information
    • Gas phase ion energetics data
    • References
    • Notes
  • Other data bachelor:
    • Henry'southward Law data
    • Ion clustering data
    • IR Spectrum
    • Mass spectrum (electron ionization)
    • Vibrational and/or electronic energy levels
    • Fluid Backdrop
  • Data at other public NIST sites:
    • Microwave spectra (on physics lab spider web site)
    • Electron-Bear on Ionization Cross Sections (on physics web site)
    • Computational Chemical science Comparison and Benchmark Database
    • Gas Phase Kinetics Database
    • Reference simulation
  • Options:
    • Switch to calorie-based units

Data at NIST subscription sites:

  • NIST / TRC Web Thermo Tables, "low-cal" edition (thermophysical and thermochemical data)
  • NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)

NIST subscription sites provide information under the NIST Standard Reference Data Program, simply require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas stage thermochemistry information

Go To: Top, Condensed phase thermochemistry data, Phase change information, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Information compilation copyright by the U.S. Secretarial assistant of Commerce on behalf of the U.Due south.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas -84. ± 0.4 kJ/mol Review Manion, 2002 adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas -83.8 ± 0.3 kJ/mol Ccb Pittam and Pilcher, 1972 ALS
Δfgas -84.67 ± 0.49 kJ/mol Ccb Prosen and Rossini, 1945 Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Δcgas -1560.7 ± 0.3 kJ/mol Ccb Pittam and Pilcher, 1972 Corresponding Δfgas = -83.85 kJ/mol (simple adding by NIST; no Washburn corrections); ALS
Δcgas -1559.9 ± 0.46 kJ/mol Ccb Prosen and Rossini, 1945 Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -84.64 kJ/mol (simple adding by NIST; no Washburn corrections); ALS
Δcgas -1559.viii ± 0.46 kJ/mol Ccb Rossini, 1934 Corresponding Δfgas = -84.68 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant force per unit area oestrus capacity of gas

Cp,gas (J/mol*K) Temperature (One thousand) Reference Annotate
35.70 100. Gurvich, Veyts, et al., 1989 p=ane bar. Recommended entropies and oestrus capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.Due south., 1944, Chao J., 1973, Pamidimukkala 1000.One thousand., 1982].; GT
42.30 200.
52.49 298.15
52.71 300.
65.46 400.
77.94 500.
89.19 600.
99.14 700.
107.94 800.
115.71 900.
122.55 1000.
128.55 1100.
133.80 1200.
138.39 1300.
142.xl 1400.
145.ninety 1500.
148.98 1600.
151.67 1700.
154.04 1800.
156.xiv 1900.
158.00 2000.
159.65 2100.
161.12 2200.
162.43 2300.
163.61 2400.
164.67 2500.
165.63 2600.
166.49 2700.
167.28 2800.
168.00 2900.
168.65 3000.

Constant force per unit area heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.66 ± 0.31 189.twenty Halford J.O., 1957 Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT
43.25 ± 0.32 209.30
45.08 ± 0.34 229.65
47.27 ± 0.35 249.90
47.17 ± 0.35 250.15
49.68 ± 0.37 272.00
49.51 ± 0.04 272.07
50.66 ± 0.42 279.00
52.14 ± 0.39 292.00
53.27 ± 0.07 302.70
57.forty ± 0.04 335.82
58.91 347.65
lx.38 359.75
61.04 ± 0.x 364.78
62.x ± 0.47 373.60
63.89 387.55
72.43 451.95
80.08 520.55
86.27 561.65
90.46 603.25

Condensed phase thermochemistry information

Become To: Top, Gas phase thermochemistry information, Phase change information, Reaction thermochemistry data, Gas stage ion energetics information, References, Notes

Data compilation copyright by the U.South. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Annotate
liquid 126.vii J/mol*Yard North/A Witt and Kemp, 1937 Entropy from 0 to 15 K calculated using a Debye function.

Constant pressure level heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (Chiliad) Reference Comment
68.66 100. Atake and Chihara, 1976 T = 50 to 100 K. Data given graphically. Cp = 0.69933 (T/Yard) - 2.385 J/mol*K (50 to 70 K, for solid).
68.five 94. Roder, 1976 From data 90.3 to 94 One thousand. Average value over range.
68.44 100.32 Roder, 1976, two T = 93 to 301 K (saturation line), 91 to 330 K, pressures from 0 to 33 MPa.
72.22 180. Witt and Kemp, 1937 T = 15 to 185 K.
74.48 200. Wiebe, Hubbard, et al., 1930 T = 67 to 305.2 K. Heat capacity of saturated liquid given to 295 K is 136.ane J/mol*G.

Phase modify data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry information, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright past the U.South. Secretary of Commerce on behalf of the United statesA. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny manager
AC - William Eastward. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil 184.half dozen ± 0.6 K AVG Northward/A Average of 23 values; Individual data points
Quantity Value Units Method Reference Annotate
Tfus 101. Yard N/A Streng, 1971 Incertitude assigned by TRC = 1. One thousand; TRC
Tfus 89.ii K N/A Timmermans, 1935 Uncertainty assigned by TRC = 1.5 One thousand; TRC
Quantity Value Units Method Reference Annotate
Ttriple 91. ± 6. M AVG Northward/A Average of 10 values; Individual information points
Quantity Value Units Method Reference Annotate
Ptriple 0.000011 bar North/A Younglove and Ely, 1987 Uncertainty assigned past TRC = v.×10-9 bar; TRC
Quantity Value Units Method Reference Comment
Tc 305.three ± 0.3 Yard AVG N/A Average of 41 out of 46 values; Individual data points
Quantity Value Units Method Reference Comment
Pc 49. ± i. bar AVG North/A Boilerplate of 28 out of 29 values; Individual information points
Quantity Value Units Method Reference Comment
Vc 0.147 ± 0.002 50/mol AVG N/A Average of 6 values; Private information points
Quantity Value Units Method Reference Comment
ρc 6.9 ± 0.4 mol/50 AVG N/A Average of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap 9.76 kJ/mol Northward/A Majer and Svoboda, 1985

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
14.703 184.ane N/A Witt and Kemp, 1937 DH
15.3 288. A Stephenson and Malanowski, 1987 Based on data from 273. - 305. K.; AC
15.vii 170. A Stephenson and Malanowski, 1987 Based on data from 154. - 185. K.; AC
17.vii 114. A Stephenson and Malanowski, 1987 Based on data from 95. - 129. K.; AC
xiv.9 214. A Stephenson and Malanowski, 1987 Based on data from 185. - 229. K.; AC
xiv.9 259. A Stephenson and Malanowski, 1987 Based on information from 228. - 274. M.; AC
17.1 129. North/A Carruth and Kobayashi, 1973 Based on information from 91. - 144. K.; Ac
xiv.7 210. N/A Reid, 1972 Air conditioning
14.7 184. North/A Witt and Kemp, 1937 AC
fifteen.iii 185. N/A Loomis and Walters, 1926 Based on data from 136. - 200. K.; Ac

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (one − Tr)β
ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference
289. - 301. 29.43 0.3696 305.four Majer and Svoboda, 1985

Entropy of vaporization

ΔvapSouth (J/mol*K) Temperature (K) Reference Comment
79.87 184.1 Witt and Kemp, 1937 DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)

View plot Requires a JavaScript / HTML 5 sheet capable browser.

Temperature (One thousand) A B C Reference Comment
91.33 - 144.xiii 4.50706 791.3 -6.422 Carruth and Kobayashi, 1973 Coefficents calculated by NIST from author'due south information.
135.74 - 199.91 3.93835 659.739 -16.719 Loomis and Walters, 1926 Coefficents calculated past NIST from author'south data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (Thousand) Method Reference Comment
22.6 85. Northward/A Regnier, 1972 Based on data from 80. - 90. K.; AC
xx.5 90. B Bondi, 1963 Air conditioning

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
0.583 xc.341 Atake and Chihara, 1976 Triple point.; DH
2.79 89.v Domalski and Hearing, 1996 AC
0.58 90.3 Atake and Chihara, 1976 Ac

Entropy of fusion

ΔfusSouth (J/mol*K) Temperature (M) Reference Comment
6.46 90.341 Atake and Chihara, 1976 Triple; DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (Grand) Initial Phase Terminal Phase Reference Comment
ii.282 89.813 crystaline, II crystaline, I Atake and Chihara, 1976 DH
2.857 89.87 crystaline, I liquid Witt and Kemp, 1937 DH
2.793 89.50 crystaline, I liquid Wiebe, Hubbard, et al., 1930 DH
2.4375 89.77 crystaline, II crystaline, I Roder, 1976 DH

Entropy of stage transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
25.48 89.813 crystaline, Ii crystaline, I Atake and Chihara, 1976 DH
31.8 89.87 crystaline, I liquid Witt and Kemp, 1937 DH
31.two 89.l crystaline, I liquid Wiebe, Hubbard, et al., 1930 DH
27.fifteen 89.77 crystaline, Two crystaline, I Roder, 1976 DH

Reaction thermochemistry information

Go To: Superlative, Gas phase thermochemistry data, Condensed phase thermochemistry data, Stage modify data, Gas phase ion energetics data, References, Notes

Information compilation copyright past the U.S. Secretary of Commerce on behalf of the UsA. All rights reserved.

Data compiled as indicated in comments:
K - Michael M. Meot-Ner (Mautner) and Sharon Yard. Lias
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A full general reaction search form is also available. Future versions of this site may rely on reaction search pages in identify of the enumerated reaction displays seen below.

Individual Reactions

Cobalt ion (1+)  + Ethane = ( Cobalt ion (1+)  • Ethane )

By formula: Co+  + C2H6 = ( Co+  • C2H6 )

Quantity Value Units Method Reference Comment
Δr 93.3 J/mol*Chiliad SIDT Kemper, Bushnell, et al., 1993 gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (1000) Method Reference Comment
100. (+5.0,-0.) CID Armentrout and Kickel, 1994 gas stage; guided ion beam CID; G
117. (+6.vii,-0.) SIDT Kemper, Bushnell, et al., 1993 gas phase; switching reaction(Co+)CH4, ΔrSouthward(500 K); One thousand

( Cobalt ion (1+)  • Methane )  + Ethane = ( Cobalt ion (1+)  • Ethane  • Methane )

By formula: ( Co+  • CHfour )  + C2H6 = ( Co+  • C2H6  • CH4 )

Quantity Value Units Method Reference Comment
Δr 108. J/mol*K SIDT Kemper, Bushnell, et al., 1993 gas stage; switching reaction(Co+).2CH4, ΔrS(480 M); K

Enthalpy of reaction

ΔrH° (kJ/mol) T (Thousand) Method Reference Comment
119. (+five.4,-0.) SIDT Kemper, Bushnell, et al., 1993 gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

three Water  (one thousand)  + Aluminum, triethyl-  (fifty) = AlH3O3  (amorphous)  + 3 Ethane  (g)

By formula: 3 HtwoO  (thou)  + C6H15Al  (l) = AlHiiiO3  (amorphous)  + 3 C2H6  (yard)

Quantity Value Units Method Reference Comment
Δr -647.3 ± six.3 kJ/mol RSC Fowell, 1961 Please too see Cox and Pilcher, 1970. Liquid triethylaluminum contains a very small-scale molar fraction of monomer at 298 K, ca. 0.1% Smith, 1967, then that the "existent" liquid should be described as [Al(Et)3]two.; MS

CtwoH5 -  + Hydrogen cation = Ethane

By formula: C2Hv -  + H+ = C2H6

Quantity Value Units Method Reference Comment
Δr 1758. ± eight.4 kJ/mol Bran DePuy, Gronert, et al., 1989 gas phase; B
Δr 1761. ± eight.four kJ/mol Bran DePuy, Bierbaum, et al., 1984 gas phase; B
Quantity Value Units Method Reference Annotate
ΔrGrand° 1723. ± 8.eight kJ/mol H-TS DePuy, Gronert, et al., 1989 gas phase; B

( Cobalt ion (1+)  • Ethane )  + Methane = ( Cobalt ion (1+)  • Methane  • Ethane )

By formula: ( Co+  • CtwoHvi )  + CHfour = ( Co+  • CHiv  • C2H6 )

Quantity Value Units Method Reference Comment
ΔrSouthward° 110. J/mol*M SIDT Kemper, Bushnell, et al., 1993 gas phase; ΔrS(490 K); Grand

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
102. (+four.6,-0.) SIDT Kemper, Bushnell, et al., 1993 gas phase; ΔrS(490 One thousand); G

Hydrogen bromide  (g)  + ethyllithium  (cr) = Ethane  (1000)  + Lithium bromide  (cr)

By formula: HBr  (g)  + CiiH5Li  (cr) = CtwoH6  (g)  + BrLi  (cr)

Quantity Value Units Method Reference Comment
Δr -345.7 ± 2.0 kJ/mol RSC Holm, 1974 Please as well see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

CfiveO5Westward  (g)  + Ethane  (g) = C7HviO5West  (thou)

By formula: CvO5W  (one thousand)  + C2H6  (yard) = C7Hhalf-dozenO5W  (g)

Quantity Value Units Method Reference Comment
Δr -31.0 ± 8.iv kJ/mol EqG Brownish, Ishikawa, et al., 1990 Temperature range: ca. 300-350 K; MS
Δr -41. ± 13. kJ/mol EqG Ishikawa, Brown, et al., 1988 Temperature range: 298-363 K; MS

Iron ion (1+)  + Ethane = ( Iron ion (1+)  • Ethane )

Past formula: Fe+  + CiiH6 = ( Fe+  • C2H6 )

Quantity Value Units Method Reference Comment
Δr lxx. ± x. kJ/mol MKER Carpenter, van Koppen, et al., 1995 gas phase; Yard

Enthalpy of reaction

ΔrH° (kJ/mol) T (M) Method Reference Annotate
64.0 (+5.9,-0.) CID Armentrout and Kickel, 1994 gas phase; guided ion beam CID; M

Ethane, 1,2-dichloro-  + two Hydrogen = Ethane  + ii Hydrogen chloride

By formula: CiiHfourClii  + 2 Htwo = C2Hhalf-dozen  + 2 HCl

Quantity Value Units Method Reference Comment
Δr -143.0 ± 0.96 kJ/mol Chyd Lacher, Amador, et al., 1967 gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -147.77 ± 0.l kJ/mol; At 250 C; ALS

2 Hydrogen  + Ethane, 1,1-dichloro- = Ethane  + 2 Hydrogen chloride

By formula: ii Htwo  + C2H4Clii = C2H6  + ii HCl

Quantity Value Units Method Reference Comment
Δr -140.viii ± one.0 kJ/mol Chyd Lacher, Amador, et al., 1967 gas phase; Reanalyzed by Cox and Pilcher, 1970, ii, Original value = -145.0 ± 0.fifty kJ/mol; At 250C; ALS

2 Hydrogen  + Acetylene = Ethane

Past formula: 2 H2  + C2Htwo = CtwoH6

Quantity Value Units Method Reference Comment
Δr -312.0 ± 0.63 kJ/mol Chyd Conn, Kistiakowsky, et al., 1939 gas phase; Reanalyzed by Cox and Pilcher, 1970, ii, Original value = -314.ane ± 2.8 kJ/mol; At 355 K; ALS

Diethylzinc  (l)  + ( Sulfuric Acid  • 100 Water )  (solution) = 2 Ethane  (thou)  + ( zinc sulphate  • 100 Water )  (solution)

By formula: C4H10Zn  (l)  + ( H2OfourS  • 100 HtwoO )  (solution) = ii CiiHvi  (g)  + ( OfourSZn  • 100 H2O )  (solution)

Quantity Value Units Method Reference Comment
Δr -354.4 ± iv.2 kJ/mol RSC Carson, Hartley, et al., 1949 Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS

Hydrogen  + Ethylene = Ethane

By formula: Hii  + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr -136. ± two. kJ/mol Chyd Kistiakowsky and Nickle, 1951 gas phase; ALS
Δr -136.three ± 0.iii kJ/mol Chyd Kistiakowsky, Romeyn, et al., 1935 gas phase; ALS

2 Hydrogen chloride  (chiliad)  + Aluminum, chlorodiethyl-  (l) = AlCl3  (cr)  + 2 Ethane  (g)

Past formula: ii HCl  (g)  + CivH10AlCl  (l) = AlCl3  (cr)  + 2 C2Hvi  (g)

Quantity Value Units Method Reference Comment
Δr -265.0 ± iii.three kJ/mol RSC Shaulov and Shmyreva, 1968 The reaction enthalpy was derived from data in Shaulov and Shmyreva, 1968.; MS

CtwoHiv +  + Ethane = ( CtwoH4 +  • Ethane )

Past formula: CtwoHiv +  + CiiH6 = ( C2Hfour +  • C2H6 )

Quantity Value Units Method Reference Comment
Δr 64.0 kJ/mol PHPMS Hiraoka and Kebarle, 1980 gas phase; One thousand
Quantity Value Units Method Reference Comment
ΔrSouthward° 88. J/mol*One thousand PHPMS Hiraoka and Kebarle, 1980 gas phase; G

2 Hydrogen  + Ethene, chloro- = Ethane  + Hydrogen chloride

Past formula: two H2  + C2H3Cl = C2H6  + HCl

Quantity Value Units Method Reference Comment
Δr -214.2 ± 0.8 kJ/mol Chyd Lacher, Emery, et al., 1956 gas stage; At 298 K, see Lacher, Kianpour, et al., 1956; ALS

Hydrogen bromide  (g)  + CiiH5BrMg  (solution) = Ethane  (solution)  + Br2Mg  (solution)

By formula: HBr  (m)  + C2H5BrMg  (solution) = C2Hhalf dozen  (solution)  + Br2Mg  (solution)

Quantity Value Units Method Reference Comment
Δr -299.2 ± two.2 kJ/mol RSC Holm, 1981 solvent: Diethyl ether; MS

( Cobalt ion (1+)  • 2 Ethane )  + Ethane = ( Cobalt ion (1+)  • 3 Ethane )

Past formula: ( Co+  • two C2H6 )  + C2Hsix = ( Co+  • iii C2Hhalf dozen )

Quantity Value Units Method Reference Comment
Δr 50. kJ/mol SIDT Kemper, Bushnell, et al., 1993 gas stage; ΔrH<; M

Aluminum ion (1+)  + Ethane = ( Aluminum ion (1+)  • Ethane )

By formula: Al+  + C2Hhalf-dozen = ( Al+  • C2Hhalf dozen )

Quantity Value Units Method Reference Comment
Δr 38. ± 8.iv kJ/mol CIDC,EqG Stockigt, Schwarz, et al., 1996 Anchored to theory; RCD

two Hydrogen  + Vinyl bromide = Hydrogen bromide  + Ethane

By formula: 2 H2  + C2HiiiBr = HBr  + CtwoH6

Quantity Value Units Method Reference Comment
Δr -199.2 ± 1.9 kJ/mol Chyd Lacher, Kianpour, et al., 1957 gas phase; ALS

Hydrogen  + 2 Ethane, iodo- = 2 Ethane  + Iodine

By formula: Hii  + ii CtwoH5I = ii CtwoHhalf-dozen  + I2

Quantity Value Units Method Reference Annotate
Δr -88.seven ± three.3 kJ/mol Chyd Ashcroft, Carson, et al., 1965 liquid phase; ALS

Hydrogen  + Ethyl bromide = Hydrogen bromide  + Ethane

By formula: H2  + CiiH5Br = HBr  + C2H6

Quantity Value Units Method Reference Comment
Δr -59.0 ± 1.1 kJ/mol Chyd Fowell, Lacher, et al., 1965 gas phase; ALS

Hydrogen  + 2 Ethyl bromide = 2 Ethane  + Bromine

By formula: H2  + 2 C2HfiveBr = two C2H6  + Br2

Quantity Value Units Method Reference Comment
Δr 23. ± 13. kJ/mol Chyd Ashcroft, Carson, et al., 1965 liquid stage; ALS

Hydrogen  + Ethyl Chloride = Ethane  + Hydrogen chloride

By formula: H2  + C2H5Cl = C2H6  + HCl

Quantity Value Units Method Reference Comment
Δr -69.iii ± 0.4 kJ/mol Chyd Lacher, Emery, et al., 1956 gas phase; ALS

Nickel ion (1+)  + Ethane = ( Nickel ion (1+)  • Ethane )

By formula: Ni+  + CiiHhalf-dozen = ( Ni+  • C2H6 )

Quantity Value Units Method Reference Comment
Δr 120. ± 10. kJ/mol MKER Carpenter, van Koppen, et al., 1995 gas phase; G

Gas stage ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry information, Stage change data, Reaction thermochemistry information, References, Notes

Data compilation copyright by the U.Due south. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Information evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
50 - Sharon G. Lias

Data compiled as indicated in comments:
B - John East. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John East. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon Grand. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CiiH6 + (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated) 11.52 ± 0.04 eV N/A Due north/A 50
Quantity Value Units Method Reference Annotate
Proton affinity (review) 596.iii kJ/mol Northward/A Hunter and Lias, 1998 HL
Quantity Value Units Method Reference Comment
Gas basicity 569.9 kJ/mol Northward/A Hunter and Lias, 1998 HL

Ionization energy determinations

IE (eV) Method Reference Comment
xi. ± i. PI Au, Cooper, et al., 1993 LL
11.52 EST Luo and Pacey, 1992 LL
11.57 EI Plessis and Marmet, 1987 LBLHLM
11.56 ± 0.02 EI Plessis and Marmet, 1987, ii LBLHLM
11.4 ± 0.4 EI Chatham, Hils, et al., 1984 LBLHLM
11.5 ± 0.ane EI Suzuki and Maeda, 1977 LLK
11.56 ± 0.02 PE Bieri, Burger, et al., 1977 LLK
eleven.76 ± 0.05 EI Flesch and Svec, 1973 LLK
11.45 ± 0.05 TE Stockbauer and Inghram, 1971 LLK
11.51 PE Dewar and Worley, 1969 RDSH
eleven.66 ± 0.05 EI Williams and Hamill, 1968 RDSH
eleven.55 CI Cermak, 1968 RDSH
11.56 PE Baker, Baker, et al., 1968 RDSH
eleven.521 ± 0.007 PI Nicholson, 1965 RDSH
11.99 PE Kimura, Katsumata, et al., 1981 Vertical value; LLK
12.0 PE Bieri and Asbrink, 1980 Vertical value; LLK
12.i ± 0.1 PE Bieri, Burger, et al., 1977 Vertical value; LLK
12.00 PE Doucet, Sauvageau, et al., 1975 Vertical value; LLK

Advent energy determinations

Ion AE (eV) Other Products Method Reference Comment
C+ 43. ± 1. ? PI Au, Cooper, et al., 1993 LL
C+ twenty.3 ± 0.2 CHiv+Htwo EI Plessis and Marmet, 1987, two LBLHLM
C+ 29.six ± 0.ii ? EI Suzuki and Maeda, 1977, 2 LLK
CH+ 31. ± 1. ? PI Au, Cooper, et al., 1993 LL
CH+ twenty.ten ± 0.08 CH3+H2 EI Plessis and Marmet, 1987, 2 LBLHLM
CH+ 26.seven ± 0.v ? EI Suzuki and Maeda, 1977, 2 LLK
CHii + 25. ± one. ? PI Au, Cooper, et al., 1993 LL
CH2 + 14.69 ± 0.05 CH4 EI Plessis and Marmet, 1987, 2 LBLHLM
CH2 + 17. ± 2. ? EI Chatham, Hils, et al., 1984 LBLHLM
CH2 + 17.three ± 0.xv ? EI Suzuki and Maeda, 1977, 2 LLK
CH3 + 14. ± 1. CH3 PI Au, Cooper, et al., 1993 LL
CH3 + xiii.65 ± 0.04 CH3 EI Plessis and Marmet, 1987, 2 LBLHLM
CHthree + 13.56 ± 0.04 CH3 - EI Plessis and Marmet, 1987, two LBLHLM
CH3 + 14. ± ii. CH3 EI Chatham, Hils, et al., 1984 LBLHLM
CH3 + 14.ane ± 0.one ? EI Suzuki and Maeda, 1977, 2 LLK
CH3 + 13.46 ± 0.05 CHiii EI Williams and Hamill, 1968 RDSH
CH4 + 20.four ± 0.3 ? EI Suzuki and Maeda, 1977, 2 LLK
C2 + twoscore. ± 1. ? PI Au, Cooper, et al., 1993 LL
C2 + 22.9 ± 0.three 3H2 EI Plessis and Marmet, 1987, 2 LBLHLM
C2 + 31.5 ± 0.2 ? EI Suzuki and Maeda, 1977, ii LLK
CiiH+ 27. ± ane. ? PI Au, Cooper, et al., 1993 LL
C2H+ 22.4 ± 0.3 2Htwo+H EI Plessis and Marmet, 1987, 2 LBLHLM
C2H+ 25.6 ± 0.2 ? EI Suzuki and Maeda, 1977, ii LLK
C2H2 + 14. ± 1. 2Htwo PI Au, Cooper, et al., 1993 LL
CiiH2 + 14.51 ± 0.04 2H2 EI Plessis and Marmet, 1987, 2 LBLHLM
C2Htwo + 15. ± ane. ? EI Chatham, Hils, et al., 1984 LBLHLM
CtwoHii + xiv.7 ± 0.1 ? EI Suzuki and Maeda, 1977, two LLK
C2H2 + fifteen.35 ± 0.50 2H2 EI D'Or, Collin, et al., 1966 RDSH
C2H3 + xiv. ± 1. H2+H PI Au, Cooper, et al., 1993 LL
CiiH3 + thirteen.76 ± 0.08 H2+H- EI Plessis and Marmet, 1987, 2 LBLHLM
C2H3 + 14.50 ± 0.04 H2+H EI Plessis and Marmet, 1987, ii LBLHLM
CiiH3 + 14.five ± 0.4 H2+H EI Chatham, Hils, et al., 1984 LBLHLM
CiiHiii + xiv.half-dozen ± 0.ane H2+H EI Suzuki and Maeda, 1977, 2 LLK
C2H3 + fifteen.22 ± 0.10 H2+H EI D'Or, Collin, et al., 1966 RDSH
C2H4 + 11. ± 1. Htwo PI Au, Cooper, et al., 1993 LL
CiiH4 + 11.81 ± 0.05 H2 EI Plessis and Marmet, 1987, 2 LBLHLM
CtwoHfour + 12.1 ± 0.4 H2 EI Chatham, Hils, et al., 1984 LBLHLM
C2Hfour + 12.ane ± 0.1 Hii PIPECO Bombach, Dannacher, et al., 1984 T = 0K; LBLHLM
CiiH4 + 12.i ± 0.1 H2 EI Suzuki and Maeda, 1977, 2 LLK
C2Hfour + 12.08 ± 0.03 Htwo PI Chupka and Berkowitz, 1967 RDSH
CiiH4 + 12.24 ± 0.10 H2 EI D'Or, Collin, et al., 1966 RDSH
C2H5 + 12. ± one. H PI Au, Cooper, et al., 1993 LL
C2H5 + 12.45 ± 0.008 H EI Plessis and Marmet, 1987, two LBLHLM
CiiH5 + 12.1 ± 0.iv H EI Chatham, Hils, et al., 1984 LBLHLM
C2Hfive + 12.4 ± 0.ane H PIPECO Bombach, Dannacher, et al., 1984 T = 0K; LBLHLM
C2H5 + 12.40 H PI Traeger and McLoughlin, 1981 LLK
CtwoH5 + 12.0 ± 0.1 H EI Suzuki and Maeda, 1977, 2 LLK
CtwoH5 + 12.66 ± 0.05 H EI Williams and Hamill, 1968 RDSH
C2H5 + 12.00 ± 0.05 H- PI Chupka and Berkowitz, 1967 RDSH
CiiHfive + 12.65 ± 0.08 H PI Chupka and Berkowitz, 1967 RDSH
H+ 21. ± 1. ? PI Au, Cooper, et al., 1993 LL
H+ 23.five ± 0.5 ? EI Suzuki and Maeda, 1977, 2 LLK
Htwo + thirty. ± 1. ? PI Au, Cooper, et al., 1993 LL
Hii + 35.0 ± 0.5 ? EI Suzuki and Maeda, 1977, ii LLK
H2 + 31. ± 1. C2H4 +? EI Newton, Sciamanna, et al., 1970 RDSH
Hiii + 33. ± i. ? PI Au, Cooper, et al., 1993 LL
H3 + 32. ± i. ? EI Fuchs, 1972 LLK

De-protonation reactions

C2Hv -  + Hydrogen cation = Ethane

By formula: C2H5 -  + H+ = C2Hvi

Quantity Value Units Method Reference Comment
Δr 1758. ± viii.4 kJ/mol Bran DePuy, Gronert, et al., 1989 gas stage; B
Δr 1761. ± 8.iv kJ/mol Bran DePuy, Bierbaum, et al., 1984 gas stage; B
Quantity Value Units Method Reference Annotate
ΔrYard° 1723. ± eight.8 kJ/mol H-TS DePuy, Gronert, et al., 1989 gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed stage thermochemistry information, Phase change data, Reaction thermochemistry information, Gas phase ion energetics information, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the United statesA. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Germination of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Information, 2002, 31, 1, 123-172, https://doi.org/ten.1063/one.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, quaternary edition, Volume two, Gurvich, 50.Five.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all information]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methyl hydride, ethane, propane, n-butane and ii-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, Eastward.J.; Rossini, F.D., Heats of combustion and formation of the methane series hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric conclusion of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.Five.; Alcock, C.B., Thermodynamic Backdrop of Private Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Pitzer Thousand.S., 1944
Pitzer M.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, ii, 427-438. [all information]

Pamidimukkala K.M., 1982
Pamidimukkala Thousand.M., Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methyl hydride and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all information]

Kistiakowsky Thou.B., 1939
Kistiakowsky G.B., Gaseous heat capacities. I. The method and the estrus capacities of C2H6 and C2D6, J. Chem. Phys., 1939, 7, 281-288. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]

Witt and Kemp, 1937
Witt, R.G.; Kemp, J.D., The heat capacity of ethane from xv°K to the boiling point. The heat of fusion and the rut of vaporization, J. Am. Chem. Soc., 1937, 59, 273-276. [all data]

Atake and Chihara, 1976
Atake, T.; Chihara, H., Calorimetric study of the stage changes in solid ethane, Chem. Lett., 1976, (7), 683-688. [all data]

Roder, 1976
Roder, H.M., The heats of transition of solid ethane, J. Chem. Phys., 1976, 65, 1371-1373. [all data]

Roder, 1976, 2
Roder, H.M., Measurements of the specific heats, Ca, and Cv, of dense gaseous and liquid ethane, J. Res., 1976, NBS 80A, 739-759. [all data]

Wiebe, Hubbard, et al., 1930
Wiebe, R.; Hubbard, Grand.H.; Brevoort, Grand.J., The heat chapters of saturated liquid ethane from the boiling signal to the disquisitional temperature and oestrus fusion of the solid, J. Am. Chem. Soc., 1930, 52, 611-622. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Depression Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Estrus of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-xl. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, sixteen, 577. [all information]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki, Vapor pressure level of normal paraffins ethane through due north-decane from their triple points to about ten mm mercury, J. Chem. Eng. Data, 1973, xviii, 2, 115-126, https://doi.org/10.1021/je60057a009 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. Higher Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, half dozen, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Loomis and Walters, 1926
Loomis, A.G.; Walters, J.East., THE VAPOR PRESSURE OF ETHANE NEAR THE NORMAL Humid POINT 1 , J. Am. Chem. Soc., 1926, 48, 8, 2051-2055, https://doi.org/10.1021/ja01419a006 . [all data]

Regnier, 1972
Regnier, J., J. Chim. Phys. Phys.-Chim. Biol., 1972, 69, 6, 942. [all data]

Bondi, 1963
Bondi, A., Estrus of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Information, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene Southward.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Stage. Volume Three, J. Phys. Chem. Ref. Data, 1996, 25, i, 1, https://doi.org/ten.1063/1.555985 . [all information]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)i,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all information]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.Fifty., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Fowell, 1961
Fowell, P.A., Ph. D. Thesis, University of Manchester, 1961. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all information]

Smith, 1967
Smith, M.B., J. Phys. Chem., 1967, 71, 364. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, Due south.; Barlow, S.E.; Bierbaum, V.One thousand.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all information]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Calculator Analysed Thermochemical Information: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all information]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, Southward.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-Yard.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.G., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Ishikawa, Dark-brown, et al., 1988
Ishikawa, Y.; Brown, C.E.; Hackett, P.A.; Rayner, D.M., Chem. Phys. Lett., 1988, 150, 506. [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.One thousand.; Bowers, M.T., Details of Potential Free energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all information]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Role 5.-Heats of hydrogenation of dichloromethane, one,1- and 1,ii-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. Eight. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Carson, Hartley, et al., 1949
Carson, A.Southward.; Hartley, K.; Skinner, H.A., Thermochemistry of metallic alkyls. Part II.?The bail dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/x.1039/tf9494501159 . [all information]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.One thousand., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, x, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, M.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.Due east., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Shaulov and Shmyreva, 1968
Shaulov, Yu.Kh.; Shmyreva, K.O., Russ. J. Phys. Chem., 1968, 42, 1008. [all information]

Hiraoka and Kebarle, 1980
Hiraoka, K.; Kebarle, P., Ion Molecule Reactions in Ethane. Thermochemistry and Structures of the Intermediate Complexes: C4H11+ and C4H10+ Formed in the Reactions of C2H5+ and C2H4+ with C2H6, Tin can. J. Chem., 1980, 58, 21, 2262, https://doi.org/10.1139/v80-364 . [all data]

Lacher, Emery, et al., 1956
Lacher, J.R.; Emery, Due east.; Bohmfalk, E.; Park, J.D., Reaction heats of organic compounds. IV. A high temperature calorimeter and the hydrogenation of methyl ethyl and vinyl chlorides, J. Phys. Chem., 1956, 60, 492-495. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. Ii, 1981, 464.. [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/ten.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Montgomery, P.; Knedler, H.; Park, J.D., Reaction heats of organic halogen compounds. IX. The catalytic hydrogenation of vinyl and perfluorovinyl bromide, J. Phys. Chem., 1957, 61, 1125-1126. [all information]

Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.Thou., Thermochemistry of reductions caused by lithium aluminium hydride. Office 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide, Trans. Faraday Soc., 1965, 61, 225-229. [all data]

Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. Office 3.-Heats of hydrogenation of methyl bromide and ethyl bromide, Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]

Hunter and Lias, 1998
Hunter, Eastward.P.; Lias, Southward.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, three, 413-656, https://doi.org/10.1063/one.556018 . [all data]

Au, Cooper, et al., 1993
Au, J.W.; Cooper, G.; Brion, C.Eastward., The molecular and dissociative photoionization of ethane, propane, and northward-butane: Absolute oscillator strengths (ten-80 eV) and breakdown pathways, Chem. Phys., 1993, 173, 241. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl exchange on ionization energies of alkanes and haloalkanes and on heats of germination of their molecular cations. Part ii. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Plessis and Marmet, 1987
Plessis, P.; Marmet, P., Electroionization study of ethane: structures in the ionization and appearance energy curves, Can. J. Chem., 1987, 65, 2004. [all data]

Plessis and Marmet, 1987, ii
Plessis, P.; Marmet, P., Electroionization written report of ethane: Ionization and appearance energies, ion-pair formations and negative ions, Can. J. Chem., 1987, 65, 1424. [all data]

Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A., Total and fractional electron collisional ionization cross sections for CH4, C2H6, SiH4, and SiiiH6 , J. Chem. Phys., 1984, 81, 1770. [all data]

Suzuki and Maeda, 1977
Suzuki, I.H.; Maeda, K., Ionization efficiency curves of ethane by electron impact, Int. J. Mass Spectrom. Ion Phys., 1977, 24, 147. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all information]

Flesch and Svec, 1973
Flesch, K.D.; Svec, H.J., Fragmentation reactions in the mass spectrometer for Cii-C5 alkanes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all information]

Stockbauer and Inghram, 1971
Stockbauer, R.; Inghram, M.M., Experimental relative Franck-Condon factors for the ionization of methane, ethane, and propane, J. Chem. Phys., 1971, 54, 2242. [all information]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their estimation, J. Chem. Phys., 1969, 50, 654. [all data]

Williams and Hamill, 1968
Williams, J.One thousand.; Hamill, W.H., Ionization potentials of molecules and free radicals and advent potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Cermak, 1968
Cermak, 5., Penning ionization electron spectroscopy, Advan. Mass Spectrom., 1968, four, 697. [all data]

Bakery, Bakery, et al., 1968
Bakery, A.D.; Bakery, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, one, 285. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. Ii. Simulated and 18-carat structure, J. Chem. Phys., 1965, 43, 1171. [all information]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, Due south.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic construction for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, 50., 30.iv-nm He(2) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all information]

Doucet, Sauvageau, et al., 1975
Doucet, J.; Sauvageau, P.; Sandorfy, C., Photoelectron far-ultraviolet absorption spectra of chlorofluoro derivatives of ethane, J. Chem. Phys., 1975, 62, 355. [all data]

Suzuki and Maeda, 1977, ii
Suzuki, I.H.; Maeda, Yard., Behavior of hydrogen atoms in the fragmentation of CHthreeCDiii , Can. J. Chem., 1977, 55, 3124. [all data]

D'Or, Collin, et al., 1966
D'Or, L.; Collin, J.E.; Longree, J., Ionisation et dissociation de 50'ethane sous 50'bear on electronique. Spectres de masse et phenomenes d'echange dans CiiHhalf-dozen, C2H5D, CH3CD3 et C2D6 , Bull. Classe Sci. Acad. Roy. Belg., 1966, 52, 518. [all information]

Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]

Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J., Photoionization of ethane, propane, and north-butane with mass analysis, J. Chem. Phys., 1967, 47, 2921. [all information]

Traeger and McLoughlin, 1981
Traeger, J.C.; McLoughlin, R.Grand., Absolute heats of formation for gas phase cations, J. Am. Chem. Soc., 1981, 103, 3647. [all data]

Newton, Sciamanna, et al., 1970
Newton, A.S.; Sciamanna, A.F.; Thomas, G.E., The occurrence of the H3 + ion in the mass spectra of organic compounds, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 465. [all data]

Fuchs, 1972
Fuchs, R., Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen, Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Stage change data, Reaction thermochemistry data, Gas phase ion energetics data, References

  • Symbols used in this document:
    AE Appearance energy
    Cp,gas Constant pressure level heat capacity of gas
    Cp,liquid Constant pressure heat capacity of liquid
    IE (evaluated) Recommended ionization energy
    Pc Critical pressure
    Ptriple Triple point pressure
    liquid Entropy of liquid at standard conditions
    T Temperature
    Tboil Boiling point
    Tc Critical temperature
    Tfus Fusion (melting) signal
    Ttriple Triple point temperature
    Vc Critical book
    ΔHtrs Enthalpy of phase transition
    ΔStrs Entropy of phase transition
    Δcgas Enthalpy of combustion of gas at standard conditions
    Δfgas Enthalpy of germination of gas at standard conditions
    ΔfusH Enthalpy of fusion
    ΔfusSouthward Entropy of fusion
    Δr Complimentary free energy of reaction at standard conditions
    Δr Enthalpy of reaction at standard conditions
    Δr Entropy of reaction at standard weather condition
    ΔsubH Enthalpy of sublimation
    ΔvapH Enthalpy of vaporization
    Δvap Enthalpy of vaporization at standard weather condition
    ΔvapS Entropy of vaporization
    ρc Disquisitional density
  • Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
  • The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality re-create of the Database and to verify that the data contained therein accept been selected on the footing of sound scientific judgment. However, NIST makes no warranties to that consequence, and NIST shall not exist liable for whatsoever damage that may result from errors or omissions in the Database.
  • Customer support for NIST Standard Reference Information products.

Heat Of Combustion Of Ethane,

Source: https://webbook.nist.gov/cgi/cbook.cgi?ID=C74840&Mask=2F

Posted by: morinupolliveng36.blogspot.com

0 Response to "Heat Of Combustion Of Ethane"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel